Matemáticas experimentales

Quiero presentar el trabajo que han publicado en Internet de la exposición “¿Por qué las matemáticas?�, concebida y realizada por iniciativa y con la colaboración de la UNESCO, por el Centre•Sciences (Centro de cultura científica, técnica de la región Centro – Orléans) y el Adecum (Asociación para el desarrollo de la cultura matemáticas – Orléans).

Han publicado un flash que representa una exposición virtual con más de 200 situaciones matemáticas que proponen a los alumnos experimentar, ensayar, plantear hipótesis, testarlas, intentar validarlas, buscar demostrar y debatir alrededor de las propiedades matemáticas.

En cada tema hay:

  • una introducción interactiva (“aperitivoâ€?),
  • experimentos para hacer realizar a los alumnos,
  • algunas explicaciones y referencias históricas,
  • algunas aplicaciones donde estas matemáticas se utilizan,
  • un envío a través de palabras clave hacia la web,
  • un dossier con algunas indicaciones en formato pdf para imprimir.

También existe un pdf con las actividades.

Una auténtica maravilla. Lo tenéis en : http://www.experiencingmaths.org/

La administración anumérica

En el estupendo libro «El hombre anumérico» de John Allen Paulos, nos explica por que sabemos tan pocas matemáticas, por que somos analfabetos en matemáticas o lo que el llama anuméricos. En el libro, entre otras cosas trata de responder a las siguientes preguntas: ¿Es voluntaria esta resistencia que tenemos a entender los aspectos matemáticas de la vida cotidiana?, ¿qué coste debemos pagar por esta ignorancia?…

Una de las partes que trata en el libro, es por que nos somos capaces de hacer sorteos justos o equiprobables, que todos los participantes tengan las mismas probabilidades de salir elegidos. Esto viene relacionado con nuestro analfabetismos matemático y todavía hay personas que no comprenden que el famoso sorteo de letras para designar a personas en la administración pública no es equiprobable, hay personas con más posibilidades de salir que otras.

El asunto de estos sorteos, bien podría ser un aspecto a trabajar en competencia matemática aplicada a la vida cotidiana. Es un ejemplo más de lo presentes que están en nuestra vida cotidiana las matemáticas.

En el caso del sorteo de la letra, es sencillo de entender que los que su apellido empieza por Z tiene más posibilidades de salir que los que su apellido empieza por H. Para que le toque al de la Z, basta con que salga la W, X, Y o Z, pues hay muy pocos apellidos por W, X e Y. Sin embargo para que le toque al de la H, sólo le vale la H. Por lo tanto tiene 4 veces más de posibilidades de ser elegido el de la Z que el de la H.

El razonamiento anterior sigue siendo válido para la idea «genial» que se le ocurrió a la administración de sacar la 2ª letra. La 2ª letra, evitaba las injusticias dentro de la misma inicial como García y Gracia.

En La Rioja, para designar a los vocales de los tribunales de oposiciones de Enseñanza Secundaria, se les ha ocurrido la brillante idea:

  • Nos ordenan alfabéticamente a todos los candidatos: listado
  • A cada profesor nos asignan un número. Creo que será el número de lista si no rectifican.
  • Se realiza el sorteo de la siguiente manera: con bolas del 0 al 9, se extraen las unidades, se extraen las decenas y para extraer las centenas se quitan las bolas 6, 7, 8 y 9. Si sale un número de la lista, se acaba el sorteo y si el número no está en la lista, se repite el sorteo desde el comienzo.
  • La designación de los vocales se realizará aplicando el orden alfabético, a partir del profesor cuyo número haya resultado extraído

El método es perfectamente equiprobable para los números existentes. Pero el error viene de la agrupación de los participantes, al estar intercalados por especialidades, se pierde la equiprobabilidad o lo que es lo mismo de la selección de los vocales por orden alfabético. Casi volvemos al sorteo por letra.

Por ejemplo: si tenemos que sacar a 4 vocales de latín y hay 6 que ocupan las posiciones 2, 51, 52, 53, 54, 55 y 120. Supongamos que número de participantes es 120. Para que salga el 51 pueden salir los números del 55 al 120 y del 1 al 51, o sea 115 números. Para que salga el 55, sólo valen el 52, 53, 54 y 55, o sea 4 números. Aunque le jemplo sea forzado se ve claramente que no es un sistema equiprobable.

En el caso real si se tuvieran que nombrar 4 vocales de matemáticas, yo ocupo el puesto 372 y mi hermana el 373. Los números que me asignan a mi son 25 y a mi hermana 11. O sea tengo más del doble de posibilidades que ella de pertenecer al tribunal.

Comentándolo con Luis Javier Rocandio, otro matemático, que está más informado del proceso me ha dicho: «igual asignan a los componentes un número aleatorio y no por lista y entonces si sería equiprobable». Su razonamiento se pierde por el método de asignacion: «La designación de los vocales se realizará aplicando el orden alfabético, a partir del profesor cuyo número haya resultado extraído». El sistema siendo igual, lo único que cambia son los números. En el caso de mi hermana y mío, a ella sólo le valen la extracción de 11 números (sean los que sean) y a mi 25 números.

Atendiendo al comentario de Bieito en el que pregunta como podría haberse hecho equiprobable:

Existen diferentes métodos para hacerlo equiprobable:


  1. Se crean listas por cada especialidad numeradas como se quiera. Se calcula el mínimo común múltiplo de las especialidades. La extracción se realiza desde el 1 hasta el mcm por el método de las bolas del
    sorteo. Una vez extraído, para cada especialidad, se divide el número sacado entre el número de integrantes de la lista y el resto de esta división será el número de la especialidad a partir del que se empieza a asignar. Por ejemplo: si hay tres especialidades: FQ:25, MAT: 50 y LEN:100. El mcm es 100. Se extrae un nº de 1 a 100. Supongamos que salga el 37. El nº para FQ es el resto de dividir 37 entre 25, o sea, 12 y se asignará a partir del 12. En MAT, será 37 y en LEN el 37. Este
    fué el procedimiento que se usó el año pasado en las oposiciones de primaria, este año no lo habrán hecho pues el mcm sería enorme, al haber 15 especialidades.
  2. Hacer listas numeradas por especialidades y realizar un sorteo similar al anterior para cada especialidad.



Conferencia Jordi Adell

Durante este curso, si la matrícula lo permite, vamos a tener el lujo de contar como ponente en el curso «Nuevas tendencias en educación de la TIC» a Jordi Adell.
Para aquellos que desconocen quién es Jordi Adell. Jordi Adell es Doctor en Filosofía y Ciencias de la Educación y
profesor del Departamento de Educación de la Universitat Jaume I. Ademas de su titulación, es un excelente comunicador con un gran conocimiento sobre pedagogía y nuevas tecnologías.

La charla que nos va a impartir se titula: ¿Nuevas tecnologías, viejas pedagogías?. El título lo dice todo. El contenido del curso lo tenéis aquí.

Pero mejor que cualquier explicación es ver este vídeo de la conferencia que dió en el IV Congreso Regional “Competencias Básicas y Práctica Educativaâ€?  celebrado en Cantabria.

El efecto Pigmalion o la profecía autocumplida

En los cursillos de entrenadores de fútbol, en la signatura de psicología impartida por Javier Arana (excelente comunicador), nos han explicado el  «Efecto Pigmalion» o la «profecía autocumplida». Para saber en que consiste os pongo la definición de la Wikipedia:

El efecto pigmalión, llamado así en honor a Pigmalión -Rey legendario de Chipre y reputado escultor que se enamoró de una estatua femenina de su creación-, es el proceso mediante el cual las creencias y expectativas de un grupo respecto a alguien afectan su conducta a tal punto que se provoca en el grupo la confirmación de dichas expectativas.

Sin más que observar el gráfico anterior vemos un procedimiento que sucede constantemente en el entrenamiento de fútbol y creo que de todas las disciplinas deportivas.
Pero lo más intrigante de todo, es que este mismo modelo, se da sin ningún tipo de genero de dudas en educación.

  • ¿Cuantos profesores explican para los alumnos que ellos consideran los buenos?
  • ¿Cuantos al hacer sus explicaciones siempre miran a los mismos (los buenos) para encontrar apoyo a su explicación?
  • ¿Cómo se cambia el trato afectivo con los alumnos buenos respecto de los malos?
  • …..

Esto no es nada nuevo, el psicologo Rosenthal hizo el siguiente experimento para demostrar la influencia de lo que pensamos de los alumnos en su desarrollo intelectual y rendimiento escolar:

En los experimentos de Rosenthal, se informó a los profesores de la capacidad intelectual de unos niños a los que se les habían pasado algunos tests de inteligencia.Aunque todos los niños tenían un nivel similar, a los profesores se les informó falsamente que un grupo de ellos tenía un potencial elevado para el trabajo escolar, y que por ello dichos alumnos aprenderían más rápidamente.
Meses más tarde, se sometió a los niños a nuevas pruebas de inteligencia.
Sorprendentemente, los niños a los que (falsamente) se consideró con más potencial, obtenían mayor puntuación en estos nuevos tests de inteligencia. Es decir, se habían desarrollado más, aunque todo el grupo había recibido la misma instrucción.
La interpretación que dio Rosenthal a los resultados de este experimento es que los profesores esperaban más de esos niños (ya que se les informó que eran más capaces), es decir tenían mayores expectativas, y esos alumnos intentaron llegar al nivel que el profesor esperaba de ellos.

¿¿ Seguría siendo válido el experimento actualmente???

¿Cómo aprendemos los humanos?

Leyendo diferentes blogs de mi interés, he encontrado en Cuaderno de aula esta perla del programa Redes que presentaba Eduard Punset. En esta entrevista de Eduard Punset a Roger Schank donde se habla de enseñanza y aprendizaje, podemos sacar interesantes conclusiones o por lo menos nos podría llamar a la reflexión de que cosas se pueden cambiar en nuestro modelo educativo.

Si queréis leer la entrevista transcrita la tenéis aquí.